The IEEE standard for floating point arithmetic (1985)

Single Precision

The IEEE single precision floating point standard representation requires a 32 bit word, which may be represented as numbered from 0 to 31, left to right. The first bit is the sign bit, S, the next eight bits are the exponent bits, 'E', and the final 23 bits are the fraction 'F':

	Exponent	8	Mantissa	23+1
S	EEEEEEEE	FF	FFFFFFFFF	FFFFFFFF
0	18	9		31

Unit roundoff $2^{\wedge}-24=\sim 5.96 \mathrm{x} 10^{\wedge}-8$, Range $10^{\wedge}-38-10^{\wedge} 38$
The value V represented by the word may be determined as follows:

```
- If E=255 and F is nonzero, then V=NaN ("Not a number")
- If E=255 and F is zero and S is 1, then V=-Infinity
- If E=255 and F is zero and S is 0, then V=Infinity
- If 0<E<255 then V=(-1)**S * 2 ** (E-127) * (1.F) where "1.F" is intended to represent the
    binary number created by prefixing F with an implicit leading 1 and a binary point.
- If E=0 and F is nonzero, then V=(-1)**S * 2 ** (-126) * (0.F) These are "unnormalized"
values.
- If E=0 and F is zero and S is 1, then V=-0
- If E=0 and F is zero and S is 0, then V=0
In particular,
0 00000000 00000000000000000000000= = 
1 00000000 00000000000000000000000 = -0
0 11111111 00000000000000000000000 = Infinity
1 11111111 00000000000000000000000 = -Infinity
0 11111111 00000100000000000000000 = NaN
1 11111111 00100010001001010101010 = NaN
0 10000000 000000000000000000000000= +1 * 2**(128-127)* 1.0 = 2
0 10000001 10100000000000000000000= +1 * 2**(129-127)* 1.101 = 6.5
1 10000001 10100000000000000000000= -1 * 2**(129-127)* 1.101 = -6.5
0 00000001 00000000000000000000000= +1 * 2**(1-127)* 1.0 = 2**(-126)
0 00000000 10000000000000000000000= +1* * 2**(-126)* 0.1 = 2**(-127)
0 00000000 00000000000000000000001 = +1 * 2** (-126) *
                                    0.0000000000000000000000001 =
                                    2**(-149) (Smallest positive value)
```


Double Precision

	Exponent 11	
S	EEEEEEEEEEE	FF
0	11	12

Unit roundoff $2^{\wedge}-53=\sim 1.11 \times 10^{\wedge}-16$, Range $10^{\wedge}-308-10^{\wedge} 308$
The value V represented by the word may be determined as follows:

- If $\mathrm{E}=2047$ and F is nonzero, then $V=N a N$ ("Not a number")
- If $E=2047$ and F is zero and S is 1, then $V=-I n f i n i t y$
- If $E=2047$ and F is zero and S is 0 , then V=Infinity
- If $0<E<2047$ then $V=(-1) * * S * 2$ ** (E-1023) * (1.F) where "1.F" is intended to represent the binary number created by prefixing F with an implicit leading 1 and a binary point.
- If $\mathrm{E}=0$ and F is nonzero, then $V=(-1) * * S * 2$ ** (-1022) * (0.F) These are "unnormalized" values.
- If $E=0$ and F is zero and S is 1, then $V=-0$
- If $E=0$ and F is zero and S is 0 , then $V=0$

Reference:

ANSI/IEEE Standard 754-1985,
Standard for Binary Floating Point Arithmetic

